Preparation of Nanocomposites of Poly(-caprolactone) and Multi-Walled Carbon Nanotubes by Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization
نویسندگان
چکیده
Ultrasound micro-molding technology was successfully applied to prepare nanocomposites based on a poly(ε-caprolactone) (PCL) matrix and multi-walled carbon nanotubes (MWCNTs). Optimization of processing parameters (i.e., amplitude, force and time) was crucial to obtain nanocomposites without any evidence of degradation, high material saving and short processing time (7–8 s). Good dispersion of nanotubes was achieved after processing previously formed solvent casting films. This dispersion was even partially detected in pieces directly obtained from powder mixtures of both components. Incorporation of MWCNTs had a remarkable influence on melting and crystallization processes, which were systematically studied by time resolved synchrotron experiments. Results indicated higher melting and crystallization temperatures for the nanocomposite, with temperature differences higher than 5 ◦C. Carbon nanotubes were effective nucleating agents and had an influence on crystallinity, crystallization rate and even on lamellar morphology, which was evaluated by analysis of the correlation function of small angle diffraction profiles. Crystallinity within lamellar stacks was lower for the solvent casting nanocomposite, but in this case lamellae underwent a thickening process during heating that accounted for the increase in the melting temperature. Crystallization from the melt rendered similar lamellar morphologies at the end of the process due to a lamellar insertion mechanism.
منابع مشابه
Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate)
Poly(trimethylene terephthalate) nanocomposites containing COOH functionalized multi-walled nanotubes were synthesized with in situ polymerization method. The microstructure of the nanocomposites was studied by SEM, in terms of the dispersion state of the nanotubes and the polymer–nanotube interface. The thermal behaviour, mechanical properties and conductivity of these resultant PTT/MWCNTs nan...
متن کاملEffect of Functionalization on the Crystallization Behavior of MWNT-PBT Nanocomposites
There is tremendous interest in using low loadings of multiwalled carbon nanotubes (MWNTs) to enhance the multifunctional properties of polymers, with functionalization often pursued to increase the dispersion and effective reinforcement of MWNTs within the polymer. In our interest to understand the effect of MWNT functionalization on Poly (butylene terephthalate) (PBT) crystallization kinetics...
متن کاملPreparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide
Nanocomposites containing poly(methyl methacrylate) (PMMA) and surface functionalized Multi-Walled Carbon Nanotubes (MWNTs) were synthesized. The dispersion of MWNTs in PMMA was characterized using Transmission Electron Microscopy (TEM).The synthesized nanocomposites were successfully foamed using a simple method based on the in-situ generation of supercritical carbon dioxide (CO2</sub...
متن کاملEffects of Multi-Walled Carbon Nanotubes on The Mechanical Properties of Glass/Polyester Composites
Excellent mechanical properties of carbon nanotubes (CNTs) make them outstanding candidate reinforcements to enhance mechanical properties of conventional composites. The glass/polyester composites are widely used in many industries and applications. Improving the mechanical properties of such composites with addition of CNTs can increase their applications. In this research, multi-walled carbo...
متن کاملEffect of Radiation on the Electrical Properties of PEDOT-Based Nanocomposites
Systematic evaluation of the influence of radiation on the electrical response of hybrid nanocomposites obtained by adding multi-walled carbon nanotubes into poly(3,4-ethylenedioxythiophene) and poly(styrenesulfonate) host matrix is presented. Variations of resistance and conductivity of nanocomposites depending on the volume fraction of nanotubes in the matrix, ionizing radiation dosage, and t...
متن کامل